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Background

Increasing interests and investment in the research and
development of innovative applications of
connected/automated vehicles

Most of CAV studies apply simulation for evaluation;
however, model accuracy and simulation assumptions render
limited validity of evaluation results
Lack of field data exacerbates the problem of inaccuracy in
modeling and simulation because there are no data available
for model calibration purpose.
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Background

« Afew limited CAV field experiments
— Limited number of test vehicles available for experiments;
— Larger-scale field operational tests are extremely expensive

« Avrelative low cost and more accurate evaluation approach for
CAV studies Is necessary
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Solutions

* Use emerging hardware-in-the-loop (HIL) testing tools Is the
best solution:

— Allow real test vehicles to interact with virtual vehicles from traffic
simulation models

— Provide an evaluation environment that can replicate actual deployment
conditions by using actual hardware and equipment

— Without incurring excessive costs at early stages of CAV development
« Categories
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Hardware In the Loop Testing
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High Level Project Objective

* Develop hardware-in-the-loop (HIL) testing platform
for and set up HIL experimental system at TFHRC

« Conduct HIL testing to evaluate SIAD
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Signalized Intersection Approach and Departure
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HIL System Setup

« Two challenges for the HIL testing of EAD:
— Synchronizing field and simulation traffic conditions on the fly

— Collectingreal-t i me fi el d traffic edatmeofr
simulation data from a traffic simulator
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FHWA Innovation Research Vehicles

* Proof of Concept \Vehicles
* Research Fleet Communications

-  5.9GHz DSRC, Cellular/LTE, Corrected
GPS

* On-board Technology

- Connected Vehicle Data Collection and
Processing

- Stock Radar and Ultra-Sonic Sensors
- Front and rear-facing cameras




Vehicle System Data Flow
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Connected Vehicle Highway Testbed (Intelligent
Intersection) at TFHRC
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HIL Architecture
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Q-aware SIAD

« Based on the existing SIAD algorithm, additional factors
considered:
— Background traffic:
U Interactions between the CAV and other vehicles
— Multiple intersections
U Two intersections will be considered
— Different traffic signal control modes
U Actuated control and traffic coordination will be considered
— Different penetration rates of CV vehicles
U The impacts of penetration rates of CV vehicles on the SIAD

algorithm will be evaluated
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Experimental Scenarios

— Scenario 1: Single Intersection with fixed time traffic signal control
U Case 1-1: Base case without SIAD (Adaptive Cruise Control, ACC)
U Case 1-2: Q-SIAD algorithm by considering background traffic

— Scenario 2: Single Intersection with actuated traffic signal control
U Case 2-1: Base case without SIAD (ACC)

U Case 2-2: Q-SIAD algorithm by considering background traffic and
features of actuated control
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Testing
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Results(2)

* Speedup scenario
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Results(3)

Queueaware SIAD
S Stat . SSIAD Baseline Basic SIAD
cenario cenario 0% MP 100% MP

Slowdown 56.19% 19.3 55.73% 19.3 55.73%

R5 Slowdown 43.6 191 56.19% 20.5 52.98% 20.3 53.44%

R10 Cruise 43.6 20.5 52.98% 20.5 52.98% 20.1 53.90%

R15 Cruise 22.5 21.4 4.89% 24.2 -7.56% 23.1 -2.67%
R20 Cruise 22.5 21.4 4.89% 20.9 7.11% 20.9 7.11%

GO Cruise 22.5 20.8 7.56% 22.4 0.44% 22.9 -1.78%

G5 Speedup 43.6 33.2 23.85% 39.1 10.32% 38.1 12.61%

G10 Stop 43.6 42.5 2.52% 43.4 0.46% 42.7 2.06%

G25 Stop 43.6 42.3 2.98% 43.5 0.23% 43.5 0.23% E
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Concluding Remarks

» Offer a cost-effective approach for quick
evaluation of CAV technologies

 Currently developing HIL for CACC; human-
In-the-loop

» Help public agencies and private sectors to
evaluate new CAV technologies
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